www.10gtek.com

100GBASE-SR4 CFP4 Optical Transceiver

TR-KC85S-N00

Features

- Hot pluggable CFP4 MSA form factor
- Up to 28Gb/s data rate per channel
- Compliant to IEEE 802.3bm 100GBASE- SR4
- Up to 100m OM4 MMF transmission
- Single +3.3V power supply
- Operating case temperature: 0~70°C
- 4x28G Electrical Serial Interface (CEI-28G-VSR)
- MDIO management interface with digital diagnostic monitoring
- Maximum power consumption 6W
- MTP/MPO optical connector
- RoHS-6 compliant

Applications

- 100GBASE-SR4 Ethernet
- OTN OTU4

Part Number Ordering Information

		l
TR-KC85S-N00	CFP4 SR4 100m optical transceiver with full real-time digital diagnostic	
	monitoring and pull tab	Ì
		ı

Driving Your Next Generation Networks

www.10gtek.com

1. General Description

This product is a 100Gb/s transceiver module for optical communication applications compliant to 100GBASE-SR4 of the IEEE P802.3bm standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of VCSEL optical signals over 4 multimode fibers for 100Gb/s optical transmission. Reversely, on the receiver side, the module receives 4 channels of VCSEL optical signals over 4 multimode fibers and then converts them to 4 output channels of electrical data.

The high speed VCSEL transmitters and high sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 100m links over OM4 multimode fibers and compliant to optical interface with IEEE802.3bm Clause 95 100GBASE-SR4 requirements.

The product is designed with form factor, optical/electrical connection and MDIO interface according to the CFP4 Multi-Source Agreement (MSA). The innovative design has all the fibers inside the CFP4 package configured without any splicing or non-permanent connector. Also, fiber routines are neatly organized and fixed inside a stainless steel container.

2. Functional Description

This product contains an MTP/MPO optical connector for the optical interface and a 56-pin connector for the electrical interface. Figure 1 in Section 3 shows the functional block diagram of this product.

Transmitter Operation

The transceiver module receives 4 channels of 25Gb/s electrical data, which are processed by a 4-channel Clock and Data Recovery (CDR) IC that reshapes and reduces the jitter of each electrical signal. Subsequently, each of 4 EML laser driver IC's converts one of the 4 channels of electrical signals to an optical signal that is transmitted from one of the 4 VCSEL lasers which are packaged in the Transmitter Optical Sub-Assembly (TOSA). Each laser launches an optical signal whose characteristics are compliant to IEEE802.3bm 100GBASE-SR4 requirements. The optical output power of each channel is maintained constant by an automatic power control (APC) circuit. The transmitter output can be turned off by TX_DIS hardware signal and/or through MDIO module management interface.

Receiver Operation

The receiver receives 4 channels of VCSEL optical signals over 4 multimode fibers and each of the 4 channels of optical signals is fed into one of the 4 receivers that are packaged into the Receiver Optical Sub-Assembly (ROSA). Each receiver converts the optical signal to an electrical signal. The regenerated electrical signals are retimed and de-jittered and amplified by the RX portion of the 4-channel CDR. The retimed 4-lane output electrical signals are compliant with IEEE CAUI-4 interface requirements. In addition, each received optical signal is monitored by the DOM section. The monitored

Driving Your Next Generation Networks

www.10gtek.com

value is reported through the MDIO section. If one or more received optical signal is weaker than the threshold level, RX_LOS hardware alarm will be triggered.

MDIO Interface

The CFP4 module supports the MDIO interface specified in IEEE802.3bm Clause 45. It supports alarm, control and monitor functions via hardware pins and via an MDIO bus. Upon module initialization, these functions are available. CFP4 MDIO electrical interface consists of 6 wires including 2 wires of MDC and MDIO, as well as 3 Port Address wires, and the Global Alarm wire. MDC is the MDIO Clock line driven by host and MDIO is the bidirectional data line driven by both host and module depending upon the data directions. The CFP4 uses pins in the electrical connector to instantiate the MDIO interface as listed in Table 1. MDIO Interface Pins.

Table 1. MDIO Interface Pins

PIN	Symbol	Description		Logic	"H"	"L"		
13	GLB_ALRMn	Global Alarm	0	3.3V LVCMOS	ок	Alarm		
18	MDIO	Management Data Input Output Bi-Directional Data	I/O	1.2V LVCMOS				
17	MDC	MDIO Clock	ı	1.2V LVCMOS				
19	PRTADR0	MDIO port address bit 0	ı	1.2V LVCMOS	per MDIO			
20	PRTADR1	MDIO port address bit 1	I	1.2V LVCMOS	document			
21	PRTADR2	MDIO port address bit 2	ı	1.2V LVCMOS				

www.10gtek.com

3. Transceiver Block Diagram

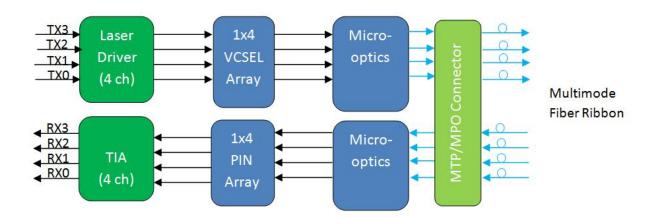


Figure 1. 100G CFP4 SR4 Transceiver Block Diagram

4. Pin Assignment and Description

The CFP4 electrical connector has 56 pins, which are arranged in top and bottom rows. The pin orientation is shown in Figure 2 and the pin map is shown in Table 2. The detailed description of the bottom side pins from pin 1 through pin 28 is shown in Table 3 while the description of the top side pins is shown in Table 4.

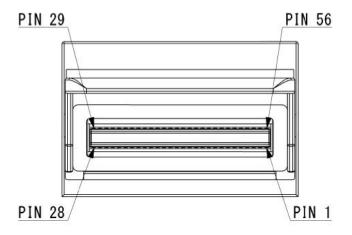


Figure 2. CFP4 Connector Pin Map Orientation

www.10gtek.com

Table 2. Pin Map

	CFP4
	Bottom
1	3.3V_GND
2	3.3V_GND
3	3.3V
4	3.3V
5	3.3V
6	3.3V
7	3.3V GND
8	3.3V_GND
9	VND_IO_A
10	VND_IO_B
11	TX_DIS (PRG_CNTL1)
12	RX_LOS (PRG_ALRM1)
13	GLB_ALRMn
14	MOD_LOPWR
15	MOD_ABS
16	MOD_RSTn
17	MDC
18	MDIO
19	PRTADR0
20	PRTADR1
21	PRTADR2
22	VND_IO_C
23	VND_IO_D
24	VND_IO_E
25	GND
26	(MCLKn)
27	(MCLKp)
28	GND

	CFP4
	Тор
56	GND
55	TX3n
54	TX3p
53	GND
52	TX2n
51	TX2p
50	GND
49	TX1n
48	TX1p
47	GND
46	TX0n
45	TX0p
44	GND
43	(REFCLKn)
42	(REFCLKp)
41	GND
40	RX3n
39	RX3p
38	GND
37	RX2n
36	RX2p
35	GND
34	RX1n
33	RX1p
32	GND
31	RX0n
30	RX0p
29	GND

REFCLK (Optional)

MCLK = TX_MCLK +
RX_MCLK
(Optional)

Table 3. Definition of the Bottom Side Pins from Pin 1 through Pin 28

PIN	Name	I/O	Logic	Description
1	3.3V_GND			3.3V Module Supply Voltage Return Ground, can be separated or tied together with Signal Ground
2	3.3V_GND			
3	3.3V			
4	3.3V			
5	3.3V			
6	3.3V			3.3V Module Supply Voltage
7	3.3V_GND			
8	3.3V_GND			
9	VIND_IO_A	I/O		Module Vendor I/O A. Do Not Connect

Driving Your Next Generation Networks

www.10gtek.com

10	VIND_IO_B	l/ O		Module Vendor I/O B. Do Not Connect
11	TX_DIS (PRG_CNT L1)	1	LVCMOS w/PUR	Transmitter Disable for all lanes. "1" or NC: Transmitter disabled; "0": transmitter enabled. (Optionally configurable as Programmable Control1 after Reset)
12	RX_LOS (PRG_ALR M1)	0	LVCMOS w/PUR	Receiver Loss of Optical Signal. "1": low optical signal; "0": normal condition (Optionally configurable as Programmable Alarm1 after Reset)
13	GLB_ALRM n	0	LVCMOS	Global Alarm. "0": alarm condition in any MDIO Alarm register; "1": no alarm condition, Open Drain, Pull up Resistor on Host
14	MOD_LOP WR	I	LVCMOS w/PUR	Module Low Power Mode. "1" or NC: module in low power (safe) mode; "0": power-on enabled
15	MOD_ABS	0	GND	Module Absent. "1" or NC: module absent; "0": module present, Pull up resistor on Host
16	MOD_RST n	I	LVCMOS w/PDR	Module Reset. "0": resets the module; "1" or NC: module enabled, Pull down Resistor in Module
17	MDC	I	1.2V CMOS	Management Data Clock (electrical specs as per IEEE Std 802.3-2012)
18	MDIO	l/ O	1.2V CMOS	Management Data I/O bi-directional data (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
19	PRTADR0	I	1.2V CMOS	MDIO Physical Port address bit 0
20	PRTADR1	I	1.2V CMOS	MDIO Physical Port address bit 1
21	PRTADR2	I	1.2V CMOS	MDIO Physical Port address bit 2
22	VND_IO_C	I/O		Module Vendor I/O C. Do Not Connect
23	VND_IO_D	I/O		Module Vendor I/O D. Do Not Connect
24	VND_IO_E	I/O		Module Vendor I/O E. Do Not Connect
25	GND			
26	(MCLKn)	0	CML	For optical waveform testing. Not for normal use
27	(MCLKp)	0	CML	For optical waveform testing. Not for normal use
28	GND			

Table 4. Definition of Top Side Pins

PIN	Name	PIN	Name
29	GND	43	(REFCLKp)
30	RX0p	44	GND
31	RX0n	45	TX0p
32	GND	46	TX0n
33	RX1p	47	GND
34	RX1n	48	TX1p
35	GND	49	TX1n
36	RX2p	50	GND
37	RX2n	51	TX2p
38	GND	52	TX2n
39	RX3p	53	GND
40	RX3n	54	TX3p
41	GND	55	TX3n
42	(REFCLKn)	56	GND

5. Optical Interface Lanes and Assignment

Figure 3 shows the orientation of the multi-mode fiber facets of the optical connector. Table 5 provides the lane assignment.

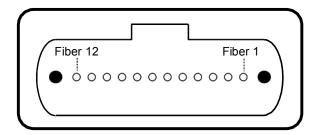


Figure 3. Outside View of the CFP4 Module MPO Receptacle

10Gtek

Table 5: Lane Assignment

Fiber #	Lane Assignment
1	RX0
2	RX1
3	RX2
4	RX3
5,6,7,8	Not used
9	TX3
10	TX2
11	TX1
12	TX0

6. Recommended Power Supply Filter

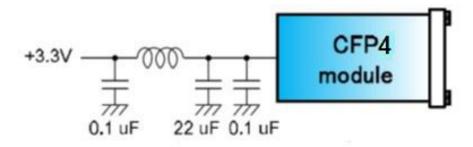


Figure 4. Recommended Power Supply Filter

7. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	degC	
Relative Humidity (non-condensation)	RH		85	%	
Operating Case Temperature	TOP	0	70	degC	
Supply Voltage	Vcc	-0.5	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC3+0.3	V	
LVTTL Output Current	lolvttl		15	mA	
Voltage on Open Collector Output	Voco	0	6	V	
Damage Threshold, each Lane	THd	3.4		dBm	1

Notes:

1. PIN receiver.

Driving Your Next Generation Networks

www.10gtek.com

8. Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	TO	0		70	degC	
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gbps	1
Data Rate, each Lane			27.9525		Gbps	2
Control Input Voltage High		2		Vcc	٧	
Control Input Voltage Low		0		0.8	V	
Power Supply Noise	Vrip			2	%	DC- 1MHz
				3	%	1- 10MHz
Link Distance (OM3 MMF)	D1			70	m	
Link Distance (OM4 MMF)	D2			100	m	

Notes:

- 1. 100GBASE-SR4.
- 2. OUT4 with FEC.

9. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Power Consumption				6.0	W			
Supply Current	Icc			1820	mA			
Low Power Mode Power Dissipation				1.0	W			
Transmitter (each Lane)								
Single-ended Input Voltage Tolerance (Note 1)		-0.3		4.0	V	Referred to TP1 signal common		
AC Common Mode Input Voltage Tolerance		15			mV	RMS		
Differential Input Voltage Swing Threshold		50			mVp p	LOSA Threshold		

Driving Your Next Generation Networks

www.10gtek.com

Differential Input Voltage Swing	Vin,pp	190		700	mVp p	
Differential Input Impedance	Zin	90	100	110	Ohm	
	Re	ceiver (ea	ach Lane)			
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVp p	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	

Notes:

10. Optical Characteristics

Parameter	Symbol	Min	Typica I	Max	Units	Notes		
Transmitter								
Center Wavelength	γС	840	850	860	nm			
RMS Spectral Width	Δλrms			0.6	nm			
Average Launch Power, each Lane	PAVG	-8.4		2.4	dBm			
Optical Modulation Amplitude (OMA), each Lane	РОМА	-6.4		3.0	dBm	1		
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.0	dB			
Launch Power in OMA minus TDEC, each Lane		-7.3			dBm			

^{1.} The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Driving Your Next Generation Networks

www.10gtek.com

Transmitter and Dispersion Eye Closure (TDEC), each Lane				4.3	dB		
Extinction Ratio	ER	2.0			dB	}	
Optical Return Loss Tolerance	TOL			12	dB	}	
Encircled Flux		≥ 86% at 19um ≤ 30% at 4.5um					
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}, 5×10 ⁻⁵ hits/sample		{0.3,0.38,0.45,0.35,0.41,0.5}			5	2	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBn	n	
		Receiver			·		
Center Wavelength	λС	840	850	860	nm		
Damage Threshold, each Lane	THd	3.4			dBm	3	
Average Receive Power, each Lane		-10.3		2.4	dBm		
Receiver Reflectance	RR			-12	dB		
Receive Power (OMA), each Lane				3.0	dBm		
Receiver Sensitivity (OMA), each Lane	SEN			-9.2	dBm		
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	4	
LOS Assert	LOSA	-30			dBm		
LOS Deassert	LOSD			-12	dBm		
LOS Hysteresis	LOSH	0.5			dB		
Conditions of Stress Receiver Sensitivity Test (Note 5):							
Stressed Eye Closure (SEC), Lane under Test			4.3		dB		
Stressed Eye J2 Jitter, Lane under Test			0.39		UI		

Driving Your Next Generation Networks

www.10gtek.com

Stressed Eye J4 Jitter, Lane under Test			0.53	UI	
OMA of each Aggressor Lane		3		dBm	
Stressed receiver eye mask definition {X1, X2, X3, Y1, Y2, Y3}	{0.28,0.5,0.5,0.33,0.33,0.4}				

Notes:

- 1. Even if the TDP < 0.9 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 5 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .
- Stressed eye closure and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

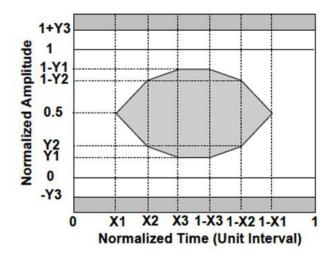


Figure 5. Eye Mask Definition

Driving Your Next Generation Networks

www.10gtek.com

11. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8436.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_lbias_Ch	-10%	10%	mA	Ch1~Ch4
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

www.10gtek.com

12. Mechanical Dimensions

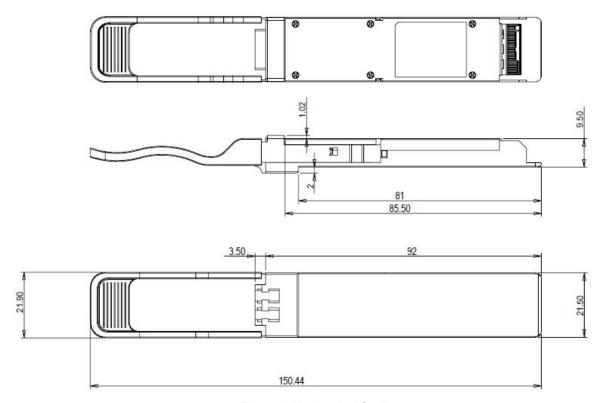


Figure 6. Mechanical Outline

13. ESD

This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

14. Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:1993:+A1:1997+A2:2001. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (July 26, 2001).

Further Information

For further information, please contact info@10gtek.com

Tel: +86 755 2998 8100 Fax: +86 755 6162 4140 Web: www.10gtek.com